

TARGET : JEE (Advanced) 2015

Course : VIJETA & VIJAY (ADP & ADR)

TEST INFORMATION

Date : 08-05-2015

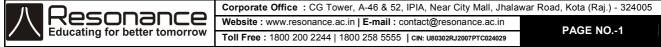
DATE: 10.05.2015

JEE PREPARTORY TEST (JPT)

DPP

NO.

10


MATHEMATICS

DAILY PRACTICE PROBLEMS

Syllabus : Full Syllabus

REVISION DPP OF PERMUTATION & COMBINATION AND PROBABILITY

Single Multipl Compr Single Double	le choice objective (- rehension (–1 negativ digit type Questions e digit type Question	negative marking) Q. 1 to -1 negative marking) Q. 19 ve marking) Q.34 to 36 (no negative marking) Q. s (no negative marking) Q. (no negative marking) Q.) to 33 37,38 . 39	Max. Tir (3 marks 2.5 min.) (4 marks, 3 min.) (3 marks 2.5 min.) (4 marks 2.5 min.) (4 marks 2.5 min.) (4 marks 2.5 min.)	ne : 107.5 min. [54, 45] [60, 45] [9, 7.5] [8, 5] [4, 2.5] [4, 2.5]		
1.		ome white and some blac awn and found black the					
	(A) $\frac{14}{55}$	(B) $\frac{13}{55}$	(C) <u>9</u> 100	(D) <u>1</u> 10			
2.		ngers board any of the child bus has got at least or		nly which has no passer	nger initially. The		
	(A) $\frac{{}^{10}P_3.3^7}{3^{10}}$	(B) $1 - \frac{{}^{10}C_3.3^7}{3^{10}}$	(C) $1 - \frac{2^{10}}{3^{10}}$	(D) $\frac{3^{10} - 3.2^1}{3^{10}}$	⁰ + 3		
3.	The number of an consecutive terms	rangements of the word " s of an A.P. is :	IDIOTS" such that v	rowels are at the places	which from three		
	(A) 36	(B) 72	(C) 24	(D) 108			
4.	elements of all po	3,, 22}. Set B is ssible subsets of B is : (B) 230 ²¹ C ₁₀	a subset of A and (C) $253^{21}C_9$		ents. The sum of		
5.	From a pack of 52	2 playing cards, half of the ds, 3 cards are drawn rar			ng at them. From		
	(A) <u>1</u> 25.17.13	(B) <u>1</u> 25.15.13	(C) $\frac{1}{52.17.13}$	(D) <u>1</u> 13.51.17			
6.		sed repeatedly until two s occur on the seventh ar			bability that two		
	(A) $\frac{11}{256}$	(B) $\frac{15}{256}$	(C) $\frac{13}{256}$	(D) <u>17</u> <u>256</u>			
7.	An insurance company believes that people can be divided into two classes, those who are accident prone and those who are not. Their statistics show that an accident prone person will not have an accident in a year period with probability 0.4 whereas this probability is 0.2 for the other kind. Given that 30% of people are accident prone, the probability that a new policy holder will have an accident within a year of purchasing a policy is :						
	(A) 0.74	(B) 0.28	(C) 0.34	(D) 0.66			
		Corporate Office	CG Tower A 46 8 52 IDIA	Near City Mall Jhalawar Road	Kota (Pail) 324005		

8.				2 cards. The probability that the order can be taken from Ace to
	(A) $\frac{1}{17}$	(B) 8 17	(C) <u>16</u> 17	(D) <u>9</u> 17
9.	squares are in the san	ne diagonal line, is :	-	a 8 × 8 chessboard, so that all
	(A) 360	(B) 392	(C) 112	(D) 224
10.	Number of ways in wh does not appear in any		BBCABBC can be arrang	ged such that the word ABBC
	(A) 360	(B) 361	(C) 358	(D) 392
11.		<pre>and B = {y₁, y₂, y₃, y₄}. elements x in A such th (B) 10920</pre>		tions f : A \rightarrow B that are onto and (D) None of these
12.		• •		hanges channels after every one for the first time after 5 minutes
	(A) 4	(B) 24	(C) 64	(D) 27
13.	Find the number of po (A) 40	sitive integers not excee (B) 58	ding 100 which are divisi (C) 42	ble by 2 or 3 but not by 4. (D) 43
14.		nt rational numbers of the	e type p/q where p, q are	co prime positive integers such
	that pq = 20! are (A) 64	(B) 128	(C) 256	(D) 512
15.	Maximum number of p (A) 12	oints of intersection of 5 (B) 6	parabolas is (C) 40	(D) 50
16.	If an unbiased coin is	tossed 10 times then the	probability that no two c	onsecutive heads occurs is
	(A) 9 64	(B) 1 – $\frac{1}{2^{10}}$	$(C)\left(\frac{1}{2}\right)^{10}$	(D) $\frac{1}{2}$
17.		2		Z
17. 18.	Number of 6 digit num (A) 56 A team of 8 students g	bers which can be form (B) 50 Joes on an excursion, in	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c	ts has to be 51, is
	Number of 6 digit num (A) 56 A team of 8 students of internal arrangement i (A) 91	bers which can be form (B) 50 goes on an excursion, in nside the car does not m (B) 182	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of	ts has to be 51, is (D) 30 an seat 5 and the other only 4. If ways in which they can travel, is (D) 3920
18.	Number of 6 digit num (A) 56 A team of 8 students g internal arrangement i (A) 91 Four people sit round a	bers which can be form (B) 50 goes on an excursion, in nside the car does not m (B) 182 a circular table and each	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920
18.	Number of 6 digit num (A) 56 A team of 8 students of internal arrangement in (A) 91 Four people sit round a probability that no two	bers which can be form (B) 50 goes on an excursion, in nside the car does not m (B) 182 a circular table and each	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126	ts has to be 51, is (D) 30 an seat 5 and the other only 4. If ways in which they can travel, is (D) 3920
18.	Number of 6 digit num (A) 56 A team of 8 students g internal arrangement i (A) 91 Four people sit round a	bers which can be form (B) 50 goes on an excursion, in nside the car does not m (B) 182 a circular table and each	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920
18.	Number of 6 digit num (A) 56 A team of 8 students of internal arrangement i (A) 91 Four people sit round a probability that no two divisible by : (A) 3 A committee of 10 met	a circular table and each people sitting next to ea (B) 7 (B) 7	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126 n person will roll a normal sch other will roll the sam (C) 9 among 9 democrats and	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920 I six sided die once. The e number is $\frac{N}{1296}$ then N is
18. 19.	Number of 6 digit num (A) 56 A team of 8 students of internal arrangement i (A) 91 Four people sit round a probability that no two divisible by : (A) 3 A committee of 10 met	a circular table and each people sitting next to ea (B) 7 (B) 7	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126 n person will roll a normal such other will roll the sam (C) 9 among 9 democrats and nittee. Number of possibl	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920 I six sided die once. The e number is $\frac{N}{1296}$ then N is (D) 7 ² I 7 republicans so that atleast
18. 19.	Number of 6 digit num (A) 56 A team of 8 students g internal arrangement i (A) 91 Four people sit round a probability that no two divisible by : (A) 3 A committee of 10 met two members of each (A) 28(¹³ C ₃)	the form th	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126 n person will roll a normal such other will roll the sam (C) 9 among 9 democrats and nittee. Number of possibl	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920 I six sided die once. The e number is $\frac{N}{1296}$ then N is (D) 7 ² I 7 republicans so that atleast e ways it can be done, is (D) 8008
18. 19. 20.	Number of 6 digit num (A) 56 A team of 8 students of internal arrangement i (A) 91 Four people sit round a probability that no two divisible by : (A) 3 A committee of 10 met two members of each (A) 28(¹³ C ₃) If w is imaginary cube	the form th	(C) $\left(\frac{1}{2}\right)^{10}$ ed if the sum of their digi (C) 36 two cars, of which one c natter then the number of (C) 126 n person will roll a normal ach other will roll the sam (C) 9 among 9 democrats and nittee. Number of possibl (C) $^{16}C_{10} - 7$	ts has to be 51, is (D) 30 can seat 5 and the other only 4. If ways in which they can travel, is (D) 3920 I six sided die once. The e number is $\frac{N}{1296}$ then N is (D) 7 ² I 7 republicans so that atleast e ways it can be done, is (D) 8008 + b = 1 then

22. The number of ordered quadruples (a_1, a_2, a_3, a_4) of positive odd integers that satisfy $a_1 + a_2 + a_3 + a_4 = 32$ is equal to :

(A)
$${}^{31}C_3$$
 (B) ${}^{17}C_3$ (C) 4495 (D) $\frac{9}{2}({}^{17}C_3) - {}^{17}C_4$

23.If polynomial of the form $x^3 + ax^2 + bx + c$ is divisible by $x^2 + 2$, then
(A) b = 1
(C) 2a = c(B) b = 2
(D) $n\{(a, b, c) : a, b, c \in N; a, b, c \le 3\} = 1$

24. A player throws an ordinary die with faces numbered 1 to 6. Whenever he throws 1, he has a further throw. If P(n) is the probability of getting a total score of n then

(A)
$$P(5) = \frac{1}{5} \left(1 - \frac{1}{6^4} \right)$$

(B) $P(5) = 5 \left(1 - \frac{1}{6^4} \right)$
(C) $P(8) = \frac{1}{180} \left(1 - \frac{1}{6^5} \right)$
(D) $P(8) = \frac{1}{180} \left(1 - \frac{1}{6^4} \right)$

25. If two events A and B are such that $P(A^c) = 0.3$, P(B) = 0.4 and $P(A \cap B^c) = 0.5$, then

(A)
$$P\left(\frac{B}{A \cup B^{c}}\right) = 0.25$$
 (B) $P(A/B) = 0.5$
(C) $P(A/B^{c}) = 5/6$ (D) $P(\text{neither A nor B}) = 0.2$

26. There is a group of 6 persons. They play a game in which each has to select a number from 1 to 4. Let A_n is event that n persons have selection of same number, then

(A)
$$P(A_5) = \frac{18}{4^6}$$

(B) $P(A_5) = \frac{18}{4^5}$
(C) $P(A_6) = \frac{1}{4^5}$
(D) $P(A_5 / A_6) = \frac{1}{2}$

27. For any two events A and B, $P(A \cap B)$ is (A) Not less than P(A) + P(B) - 1

(C) Equal to $P(A) + P(B) - P(A \cup B)$ (D) Equal to $P(A) + P(B) + P(A \cup B)$

(B) Not greater than P(A) + P(B)

- **28.** One die has three faces marked 1, two faces marked 2 and one face marked 3. Another has one face marked 1, two faces marked 2 and three faces marked 3 then
 - (A) The most probable throw with two dice is 4
 - (B) The probability of most probable throw is 1/4
 - (C) The probability of most probable throw is 7/18
 - (D) None of these

29. For the 3 events A, B and C, P (at least one occurring) = $\frac{3}{4}$, P (at least two occurring) = $\frac{1}{2}$

and P (exactly two occurring) = $\frac{2}{5}$. Which of the following relations is / are **CORRECT**?

(A)
$$P(ABC) = \frac{1}{10}$$

(B) $P(AB) + P(BC) + P(CA) = \frac{7}{10}$
(C) $P(A) + P(B) + P(C) = \frac{27}{20}$
(D) $P(A\overline{BC}) + P(\overline{ABC}) + P(\overline{ABC}) = \frac{1}{4}$

30. Each of 2010 boxes in a line contains one red marble, and for $1 \le k \le 2010$, the box at the kth position also contains k white marbles. A child begins at the first box and successively draws a single marble at random from each box in order. He stops when he first draws a red marble. Let P(n) be the probability that he stops after drawing exactly n marbles. The possible value(s) of n for which 1

$$P(n) < \frac{1}{2010}$$
, is
(A) 44 (B) 45 (C) 46 (D) 47

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005					
人 Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO3				
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PTC024029	PAGE NO3				

31.	Let all letters of word 'l defined as :	MATHEMATICS' are arra	anged in all possible	order. Three events A, B and C are
	A : Both M are togethe Which of the following		-	: Both A are together
	(A) $P(A) = P(B) = \frac{2}{11}$		(B) P(A ∩ B) = P(B	$B \cap C$) = P(C $\cap A$) = $\frac{2}{55}$
	(A) $P(A \cap B \cap C) = \frac{4}{49}$	4 95	(D) P((A∩B̄) C̄) =	$=\frac{58}{405}$
32.	possible seating arrang	gements of persons in ro	om A when n perso	spectively. A _n denotes the number of ons are to be seated in these rooms, $_{n-1} = 25! ({}^{49}C_{25})$ then n is divisible by (D) 6
33.	The number of sides or of sides can be : (A) 6	f a polygon in which the (B) 7	number of diagonals (C) 8	is at least 10 more than the number (D) 9
Comp	rehension # 1 (For Q. 3	34 to 36)		
		are divisors of number N enumber and $1 < \alpha_1 < \alpha_2$		
34.	The value of k is :			
		(B) 2 ⁿ	(C) 2n	(D) None of these
35.	The value of $1 + \frac{1}{\alpha_1} + \frac{1}{\alpha_2}$	$\frac{1}{\alpha_{k}} + \dots + \frac{1}{\alpha_{k}}$ is :		
	(A) 2	(B) 3	(C) k	(D) k + 1
36.	Number of ways to exp (A) 1	oress N as a product of tw (B) 2	vo co-prime factors i (C) 4	s (D) 8
37.				f possible sets of 6 cards that can be

37. A game uses a deck of n different cards with $n \ge 6$. If the number of possible sets of 6 cards that can be drawn from the deck is 6 times the number of possible sets of 3 cards that can be drawn then the sum of the digits of n is

38. If A be any event in sample space the maximum value of $3\sqrt{P(A)} + 4\sqrt{P(\overline{A})}$ is

- **39.** Let $f(x) = ax^4 + bx^2 + 3x + 7$ such that f(-4) = 2286 and f(4) = N. Find number of ways in which the number N can be resolved as a product of two divisors which are relatively prime.
- **40.** Find the number of different four digit numbers which can be made out of one 1, two 2's, three 3's and four 4's.

ANSWER KEY DPP # 9													
REVISION DPP OF DIFFERENTIAL EQUATION AND COMPLEX NUMBER													
1.	(C)	2.	(D)	3.	(D)	4.	(B)	5.	(B)	6.	(C)	7.	(A)
8.	(A)	9.	(A)	10.	(B)	11.	(D)	12.	(C)	13.	(B,C)	14.	(B,D)
15.	(A,B,C) 16.	(A,C,D)) 17.	(A,C,D)) 18.	(A,C,D)) 19 .	(B,C,D)) 20 .	(A, C)	21.	(B,C,D)
22.	(A,C,D) 23.	(A,B,C)) 24.	(A, D)	25.	(B, C, I	D) 26.	(A, B, C	C, D)		27.	(C, D)
28.	(A, B, 0	C) 29.	(A, C, I	D) 30.	(A,B,C)	31.	(A, B, I	D) 32.	(B, C)	33.	(C)	34.	(B)
35.	(C)	36.	(B)	37.	(A)	38.	(B)	39.	8	40.	2		
35.	(C)	36.	(B)	37.	(A)	38.	(B)	39.	8	40.	2		

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalaw	var Road, Kota (Raj.) - 324005
/ Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO4
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PTC024029	PAGE NO4